Involvement of vacuolar protein sorting pathway in Ebola virus release independent of TSG101 interaction.

نویسندگان

  • Lynn S Silvestri
  • Gordon Ruthel
  • George Kallstrom
  • Kelly L Warfield
  • Dana L Swenson
  • Timothy Nelle
  • Patrick L Iversen
  • Sina Bavari
  • M Javad Aman
چکیده

Budding of Ebola virus (EBOV) particles from the plasma membrane of infected cells requires viral and host proteins. EBOV virus matrix protein VP40 recruits TSG101, an ESCRT-1 (host cell endosomal sorting complex required for transport-1) complex protein in the vacuolar protein sorting (vps) pathway, to the plasma membrane during budding. Involvement of other vps proteins in EBOV budding has not been established. Therefore, we used VP40 deletion analysis, virus-like particle-release assays, and confocal microscopy to investigate the potential role of ESCRT-1 proteins VPS4, VPS28, and VPS37B in EBOV budding. We found that VP40 could redirect each protein from endosomes to the cell surface independently of TSG101 interaction. A lack of VPS4 adenosine triphosphatase activity reduced budding by up to 80%. Inhibition of VPS4 gene expression by use of phosphorodiamidite morpholino antisense oligonucleotides protected mice from lethal EBOV infection. These data show that EBOV can use vps proteins independently of TSG101 for budding and reveal VPS4 as a potential target for filovirus therapeutics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equine infectious anemia virus utilizes host vesicular protein sorting machinery during particle release.

A final step in retrovirus assembly, particle release from the cell, is modulated by a small motif in the Gag protein known as a late domain. Recently, human immunodeficiency virus type 1 (HIV-1) and Moloney murine leukemia virus (M-MuLV) were shown to require components of the cellular vacuolar protein sorting (VPS) machinery for efficient viral release. HIV-1 interacts with the VPS pathway vi...

متن کامل

Context-dependent effects of L domains and ubiquitination on viral budding.

Many enveloped viruses encode late assembly domains, or L domains, that facilitate virion egress. PTAP-type L domains act by recruiting the ESCRT-I (endosomal sorting complex required for transport I) component Tsg101, and YPXL/LXXLF-type L domains recruit AIP-1/ALIX, both of which are class E vacuolar protein sorting (VPS) factors, normally required for the generation of vesicles within endoso...

متن کامل

HIV-1 Vpr Abrogates the Effect of TSG101 Overexpression to Support Virus Release

HIV-1 budding requires interaction between Gag and cellular TSG101 to initiate viral particle assembly and release via the endosomal sorting complexes required for transport (ESCRT) pathway. However, some reports show that overexpression of TSG101 inhibits virus release by disruption of Gag targeting process. Since a HIV-1 accessory protein, Vpr binds to Gag p6 domain at the position close to t...

متن کامل

Budding of PPxY-containing rhabdoviruses is not dependent on host proteins TGS101 and VPS4A.

Viral matrix proteins of several enveloped RNA viruses play important roles in virus assembly and budding and are by themselves able to bud from the cell surface in the form of lipid-enveloped, virus-like particles (VLPs). Three motifs (PT/SAP, PPxY, and YxxL) have been identified as late budding domains (L-domains) responsible for efficient budding. L-domains can functionally interact with cel...

متن کامل

Role of ESCRT-I in retroviral budding.

Retroviral late-budding (L) domains are required for the efficient release of nascent virions. The three known types of L domain, designated according to essential tetrapeptide motifs (PTAP, PPXY, or YPDL), each bind distinct cellular cofactors. We and others have demonstrated that recruitment of an ESCRT-I subunit, Tsg101, a component of the class E vacuolar protein sorting (VPS) machinery, is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of infectious diseases

دوره 196 Suppl 2  شماره 

صفحات  -

تاریخ انتشار 2007